
UPC-IO: A Parallel I/O API
for UPC

V1.0pre10

Tarek El-Ghazawi
François Cantonnet

Proshanta Saha
The George Washington University

801 22nd Street NW • Suite 607
 Washington, DC 20052, USA

{tarek, fcantonn, sahap}@gwu.edu

Rajeev Thakur
Rob Ross

Mathematics and Computer Science Division
Argonne National Laboratory

9700 S. Cass Avenue
Argonne, IL 60439, USA

{thakur, rross}@mcs.anl.gov

Dan Bonachea
Dept. of Computer Science

University of California, Berkeley
Berkeley, CA 94720, USA

bonachea@cs.berkeley.edu

October 28, 2003

 2

UPC-IO:
A Parallel I/O API for UPC

Table of Contents

3 Terms, definitions and symbols .. 4

3.1 Collective .. 4
3.2 List Based File Access .. 4
3.3 File Pointer Based Access... 4
3.4 Synchronous I/O Call.. 4
3.5 Asynchronous I/O Call ... 4
3.6 Consistency Semantics.. 4
3.7 Atomicity Semantics... 5

7 Library... 6
7.3 UPC Parallel I/O <upc_io.h>.. 6

7.3.0 Background... 8
7.3.0.1 File Accessing and File Pointers... 8
7.3.0.2 Synchronous and Asynchronous I/O .. 10
7.3.0.3 Consistency and Atomicity Semantics.. 11
7.3.0.4 File Interoperability .. 13

7.3.1 Predefined Types .. 13
7.3.1.1 The upc_off_t type.. 13
7.3.1.2 The upc_file_t type ... 13
7.3.1.3 The upc_private_memvec_t type .. 15
7.3.1.4 The upc_shared_memvec_t type .. 15
7.3.1.5 The upc_filevec_t type... 16
7.3.1.6 The upc_hint_t type ... 16

7.3.2 UPC File Operations ... 18
7.3.2.1 The upc_all_open function... 18
7.3.2.2 The upc_all_close function .. 20
7.3.2.3 The upc_all_file_sync function .. 21
7.3.2.4 The upc_all_seek function .. 21
7.3.2.5 The upc_all_file_set_size function................................... 22
7.3.2.6 The upc_all_file_get_size function 23
7.3.2.7 The upc_all_file_preallocate function 23
7.3.2.8 The upc_all_fcntl function .. 24

7.3.3 Reading Data... 26
7.3.3.1 The upc_all_read_private function... 27
7.3.3.2 The upc_all_read_shared function ... 27

7.3.4 Writing Data.. 28
7.3.4.1 The upc_all_write_private function....................................... 29
7.3.4.2 The upc_all_write_shared function... 30

7.3.5 List I/O.. 31

 3

7.3.5.1 The upc_all_read_list_private function 32
7.3.5.2 The upc_all_read_list_shared function 32
7.3.5.3 The upc_all_write_list_private function........................... 33
7.3.5.4 The upc_all_write_list_shared function 34

7.3.6 Asynchronous I/O ... 35
7.3.6.1 The upc_all_async_read_private function........................... 35
7.3.6.2 The upc_all_async_read_shared function 36
7.3.6.3 The upc_all_async_write_private function 37
7.3.6.4 The upc_all_async_write_shared function........................... 37
7.3.6.5 The upc_all_async_read_list_private function............... 38
7.3.6.6 The upc_all_async_read_list_shared function 38
7.3.6.7 The upc_all_async_write_list_private function 39
7.3.6.8 The upc_all_async_write_list_shared function............... 39
7.3.6.9 The upc_all_async_wait function.. 40
7.3.6.10 The upc_all_async_test function.. 40

References... 42
APPENDIX A : Open Issues .. 43

 4

3 Terms, definitions and symbols

3.1 Collective

1 As per the UPC Language Specifications Document [1], the term collective is defined as

“a requirement placed on some language operations which constrains invocations of such
operations to be matched across all threads. The behavior of collective operation is
undefined unless all threads execute the same sequence of collective operations”.

3.2 List Based File Access

1 File accesses done using explicit offsets and sizes of data. Non-contiguous accesses may

be performed using lists of explicit offsets and lengths in the file.

3.3 File Pointer Based Access

1 File accesses are done using either private or shared file pointers, where private file

pointers provide a means for each thread to independently control its access of the file and
shared file pointers provide a means for all the threads to access the file synchronously.

3.4 Synchronous I/O Call

1 I/O calls which block and wait until the corresponding I/O operation is completed.

3.5 Asynchronous I/O Call

1 I/O calls which start an I/O operation and return immediately, and must later be completed

using a synchronization function. Only one outstanding asynchronous operation is allowed
on a UPC-IO file handle at any given time.

3.6 Consistency Semantics

1 Consistency semantics define when the data written to a file by a thread is visible to other

threads. The consistency semantics also define the outcome in the case of overlapping
reads into a shared buffer in memory when using private file pointers or list I/O functions.

 5

3.7 Atomicity Semantics

1 Atomicity semantics define the outcome of operations in which multiple threads write

concurrently to a file and some of the writes overlap each other.

 6

7 Library

7.3 UPC Parallel I/O <upc_io.h>
1 This subsection provides the UPC parallel extensions of section 7.19 in [9].

All the characteristics of library functions described in section 7.1.4 in [9]
apply to these as well.

Common Constraints

1 All UPC-IO functions are collective and must be called by all threads. (See Section 3.6 of

the UPC Specification [1] for the definition of collective).

2 If a program calls exit, upc_global_exit, or returns from main with a UPC file
still open, the file will automatically be closed at program termination, and the effect will
be equivalent to upc_all_close being implicitly called on the file.

3 If a program attempts to read past the end of a file, the read function will read data up to

the end of file and return the number of bytes actually read, which may be less than the
amount requested.

4 Writing past the end of a file increases the file size.

5 If a program seeks to a location past the end of a file and writes starting from that location,

the data in the intermediate (unwritten) portion of the file is undefined. For example, if a
program opens a new file (of size 0 bytes), seeks to offset 1024 and writes some data
beginning from that offset, the data at offsets 0–1023 is undefined. Seeking past the end of
file and performing a write causes the current file size to immediately be extended up to
the end of the write. However, just seeking past the end of file or attempting to read past
the end of file, without a write, does not extend the file size.

6 All “shared void *” pointers passed to the I/O functions (as function arguments or

indirectly through the list I/O arguments) are treated as if they had a phase field of zero
(that is, the input phase is ignored).

7 An implementation is permitted to begin performing a collective UPC-IO operation when

the first thread reaches the collective operation, and the operation is not guaranteed to be
complete until the last thread leaves the collective operation. In other words, collective
does not imply barrier semantics (The exact behavior of UPC collective operations is
currently being defined in the UPC Collective Specifications [10]).

8 The arguments to all UPC-IO functions are single-valued (must have the same value on all

threads) except where explicitly noted otherwise in the function description.

9 UPC-IO, by default, supports weak consistency and atomicity semantics. The default

(weak) semantics are as follows. The data written by a thread is only guaranteed to be

 7

visible to another thread after all threads have collectively closed or synchronized the
file.

10 Writes from a given thread are always guaranteed to be visible to subsequent reads by

the same thread, even without an intervening call to collectively close or synchronize
the file.

11 Byte-level data consistency is supported.

12 If concurrent writes from multiple threads overlap in the file, the resulting data in the

overlapping region is undefined with the weak consistency and atomicity semantics

13 When reading data being concurrently written by another thread, the data that gets

read is undefined with the weak consistency and atomicity semantics.

14 Overlapping reads into a shared buffer in memory using private file pointers or list I/O

functions leads to undefined data being read under the weak consistency and atomicity
semantics.

15 A given file can not (should not) be opened at same time by the POSIX I/O and UPC-IO

libraries.

16 Except where otherwise noted, all UPC-IO functions return NON-single-valued errors;

that is, the occurrence of an error need only be reported to at least one thread, and the
errno value reported to each such thread may differ. If an error is reported to ANY thread,
the position of ALL file pointers for the relevant file handle becomes undefined.

 8

7.3.0 Background

7.3.0.1 File Accessing and File Pointers

Figure 1. UPC-IO File Access Methods

Collective UPC-IO accesses can be done in and out of shared and private buffers, thus
private and shared reads and writes are generally supported. In each of these cases, file
pointers could be either shared or private. File pointer modes are specified by passing a
flag to the collective upc_all_open function. When a file is opened with the shared file
pointer flag, all threads share a common file pointer. When a file is opened with the
private file pointer flag, each thread gets its own file pointer.

Note that in UPC-IO, shared file pointers cannot be used in conjunction with private
buffers. UPC-IO also provides list file accesses by specifying explicit offsets and sizes of
data that is to be accessed. List IO can also be used with either private buffers or shared
buffers.

Examples 1-3 and their associated figures, Figures 2-4, give typical instances of UPC-IO
usage.
Example 1:

char buffer[10]; // and assuming a total of 4 THREADS
upc_file_t *fd;

fd = upc_all_open(“file”, UPC_RDONLY | UPC_PRIVATE_FP, 0, NULL);
upc_all_seek(fd, 5*MYTHREAD, UPC_SEEK_SET);
upc_all_read_private(fd, buffer, 10);
upc_all_close(fd);

Using Private Buffers Using Shared Buffers

With Private FP With Private FP With Shared FP

File I/O with File Pointers

List I/O Access Using Explicit Offsets

With Private
Buffer

With Shared
Buffer

 9

Figure 2. Collective read into private can provide Canonical file-view

Figure 2 represents the previous example which considers a collective read operation.
Each thread reads from a particular thread-specific offset, a block of data into a private
buffer. Figure 3 illustrates how the file is viewed in a case of example 2. The data read is
stored into a shared buffer, having a block size of 5 elements. The user selects the type of
file pointer at file-open time. The user can select either private file pointers by passing the
flag UPC_PRIVATE_FP to the function upc_all_open, or the shared file pointer by
passing the flag UPC_SHARED_FP to upc_all_open.

Example 2:

Figure 3. Collective read into a blocked shared buffer can provide a partitioned file-view

The list I/O functions allow the user to specify noncontiguous accesses both in memory
and file in the form of lists of explicit offsets and lengths in the file and explicit address
and lengths in memory. None of the file pointers are used or updated in this case. An
example of a program that uses list I/O is Example 3. The resulting data transfer is
illustrated in Figure 8.

shared [5] char buffer[20]; // and assuming a total of 4 static THREADS
upc_file_t *fd;

fd = upc_all_open(“file”, UPC_RDONLY | UPC_SHARED_FP, 0, NULL);
upc_all_read_shared(fd, buffer, 5, 20);

Thread 0 Thread 1 Thread 2 Thread 3

Current file offset = 0

0 19 …File

Thread 3
File offset = 15

Thread 0
File offset = 0

Thread 1
File offset = 5

Thread 2
File offset = 10

0 19 …
File

 10

Example 3:

Figure 4. List I/O read of noncontiguous parts of a file to private noncontiguous buffers

7.3.0.2 Synchronous and Asynchronous I/O

I/O operations can be synchronous (blocking) or asynchronous (non-blocking). While
synchronous calls are quite simple and easy to use from a programming point of view,
asynchronous operations allow the overlapping of computation and I/O to achieve
improved performance. Synchronous calls block and wait until the corresponding I/O
operation is completed. On the other hand, an asynchronous call starts an I/O operation
and returns immediately. Thus, the executing process can turn its attention to other
processing needs while the I/O is progressing.

upc_private_memvec_t memvec[2];
upc_filevec_t filevec[2];
upc_file_t *fd;
char buffer[12];

fd = upc_all_open(“file”, UPC_RDONLY| UPC_PRIVATE_FP, 0, NULL);
mem_vec[0].baseaddr = &buffer[0];
mem_vec[0].len = 4;
mem_vec[1].baseaddr = &buffer[7];
mem_vec[1].len = 3;
file_vec[0].offset = MYTHREAD*5;
file_vec[0].len = 2;
file_vec[1].offset = 10+MYTHREAD*5;
file_vec[1].len = 5;

upc_all_read_list_private(fd, 2, &mem_list, 2, &file_list);

(offset in buffer)

 …File:

THREAD 0

THREAD 1

1 0 5 6 10 11 12 13 14 15 16 17 18 19 (offset in file)

0 1 2 3 7 8 9 0 1 2 3 7 8 9

 11

UPC-IO supports both synchronous and asynchronous I/O functions. The asynchronous
I/O functions have the same syntax as their synchronous counterparts, with the addition
of “async” in their names. The asynchronous I/O functions have the restriction that
only one (collective) asynchronous operation can be active at a time on a given file
handle. That is, an asynchronous I/O function must be completed by calling
upc_all_async_test or upc_all_async_wait before another asynchronous
I/O function can be called on the same file handle. This restriction is similar to the
restriction MPI-IO has on split-collective I/O functions: only one split collective
operation can be outstanding on an MPI-IO file handle at any time.

7.3.0.3 Consistency and Atomicity Semantics

Let us first define what we mean by the terms consistency semantics and atomicity
semantics. The consistency semantics define when the data written to a file by a thread is
visible to other threads. The atomicity semantics define the outcome of operations in
which multiple threads write concurrently to a file and some of the writes overlap each
other. For performance reasons, UPC-IO, by default, supports weak consistency and
atomicity semantics. The user can select stronger semantics by passing the flags
UPC_STRICT to upc_all_open.

The default (weak) semantics are as follows. The data written by a thread is only
guaranteed to be visible to another thread after all threads have called upc_all_close
or upc_all_file_sync. (Note that the data may be visible to other threads before the
call to upc_all_close or upc_all_file_sync and that the data may become
visible to different threads at different times.) Writes from a given thread are always
guaranteed to be visible to subsequent reads by the same thread, even without an
intervening call to upc_all_close or upc_all_file_sync. Byte-level data
consistency is supported. That is, for example, if thread 0 writes one byte at offset 0 in
the file and thread 1 writes one byte at offset 1 in the file, the data from both threads will
get written to the file. If concurrent writes from multiple threads overlap in the file, the
resulting data in the overlapping region is undefined. Similarly, if one thread tries to read
the data being concurrently written by another thread, the data that gets read is undefined.
Concurrent in this context means any two read/write operations to the same file handle
with no intervening calls to upc_all_file_sync or upc_all_close.

For the functions that read into or write from a shared buffer using a shared file pointer,
the weak consistency semantics are defined as follows. Each call to
upc_all_[async_]{read,write}_shared with a shared file pointer behaves as
if the read/write operations were performed by a single, distinct, anonymous thread which
is different from any compute thread (and different for each operation). In other words,
NO reads are guaranteed to see the results of writes using the shared file pointer until
after a close or sync under the default weak consistency semantics.

 12

By passing the UPC_STRICT flag to upc_all_open, the user selects strong consistency
and atomicity semantics. In this case, the data written by a thread is visible to other
threads as soon as the write on the calling thread returns. In the case of writes from
multiple threads to overlapping regions in the file, the result would be as if the individual
write function from each thread occurred atomically in some (unspecified) order.
Overlapping writes to a file in a single (list I/O) write function on a single thread are not
permitted (see Section 7.3.5).

The consistency semantics also define the outcome in the case of overlapping reads into a
shared buffer in memory when using private file pointers or list I/O functions. By default, the
data in the overlapping space is undefined. If the user selects the UPC_STRICT mode, the
result would be as if the individual read functions from each thread occurred atomically
in some (unspecified) order. Overlapping reads into memory buffers in a single (list I/O)
read function on a single thread are not permitted (see Section 7.3.5).

Note that in the strict case, atomicity is guaranteed at the UPC-IO function level. The
entire operation specified by a single function is performed atomically, regardless of
whether it represents a single, contiguous read/write or multiple noncontiguous reads or
writes as in a list I/O function.

Example

Consider the following example in which three threads write data concurrently, each with
a single list I/O function. The numbers indicate file offsets and brackets indicate the
boundaries of a listed vector. Each thread writes its own thread id as the data values:

thread 0: {1 2 3} {5 6 7 8}
thread 1: {0 1 2}{3 4 5}
thread 2: {4 5 6} {8 9 10 11}

With the default weak semantics, the results in the overlapping locations are undefined.
Therefore, the result in the file would be the following, where x represents undefined
data.

File: 1 x x x x x x 0 x 2 2 2

That is, the data from thread 1 is written at location 0, the data from thread 0 is written at
location 7, and the data from thread 2 is written at locations 9, 10, and 11, because none
of these locations had overlapping writes. All other locations had overlapping writes, and
consequently, the result at those locations is undefined.

If the file were opened with the UPC_STRICT flag, strict semantics would be in effect.
The result, then, would depend on the order in which the writes from the three threads
actually occurred. Since six different orderings are possible, there can be six outcomes.
Let us assume, for example, that the ordering was the write from thread 0, followed by

 13

the write from thread 2, and then the write from thread 1. The (list I/O) write from each
thread happens atomically. Therefore, for this ordering, the result would be:

File: 1 1 1 1 1 1 2 0 2 2 2 2

We note that if instead of using a single list I/O function each thread used a separate
function to write each contiguous portion, there would be six write functions, two from
each thread, and the atomicity would be at the granularity of the write operation specified
by each of those functions.

7.3.0.4 File Interoperability

UPC-IO does not specify how an implementation may store the data in a file on the
storage device. Accordingly, whether a file created by UPC-IO can be directly accessed
by using C/POSIX I/O functions or not is implementation-defined. However, the UPC-IO
implementation must specify how the user can retrieve the file from the storage system as
a linear sequence of bytes and vice versa. Similarly, the implementation must specify
how familiar operations, such as the equivalent of POSIX ls, cp, rm, and mv can be
performed on the file.

7.3.1 Predefined Types

7.3.1.1 The upc_off_t type

Synopsis

1 #include <upc_io.h>

 upc_off_t myOffset;

Description

1 A signed integer that is capable of representing the size of the largest file
supported by the implementation:

 upc_off_t

7.3.1.2 The upc_file_t type

Synopsis

1 #include <upc_io.h>

 upc_file_t *myFile;

 14

Description

1 An opaque shared datatype of incomplete type (as defined in section 6.2.5 of [9])
that represents an open file handle:

 upc_file_t

Constraints

1 upc_file_t objects are always manipulated via a pointer (that is,
upc_file_t *).

Advice to implementors

1 As upc_file_t is a shared datatype, it is legal to pass a (upc_file_t *)
across threads, and two pointers to upc_file_t that reference the same logical
file handle will always compare equal.

2 The definition of upc_file_t does not restrict the implementation to store all

its metadata with affinity to one thread. Each thread can still have local access to
its metadata. For example, below is a simple approach an implementation could
use:

/* for a POSIX-based implementation */
typedef int my_internal_filehandle_t;

#ifdef _UPC_INTERNAL
 typedef struct _priv_upc_file_t {
 my_internal_filehandle_t fd;
 ... other metadata ...
 } priv_upc_file_t;
#else
 struct _priv_upc_file_t;
#endif

typedef shared struct _priv_upc_file_t upc_file_t;

upc_file_t *upc_all_open(...) {

 upc_file_t *handles =
 upc_all_alloc(THREADS, sizeof(upc_file_t));

 /* get my handle */
 upc_file_t *myhandle = &(handles[MYTHREAD]);

 /* cast to a private pointer */
 priv_upc_file_t* myprivhandle =
(priv_upc_file_t*)myhandle;

 15

 /* setup my metadata using private pointer */
 myprivhandle->fd = open(...);

 ...

 return handles;
}

The basic idea is that the “handle” exposed to the user actually points to a cyclic,
distributed array. As a result, each thread has easy, local access to its own internal
handle metadata with no communication, while maintaining the property that the
handle that UPC-IO exposes to the client is a single-valued pointer-to-shared. An
additional advantage is that a thread can directly access the metadata for other
threads, which may occasionally be desirable in the implementation.

7.3.1.3 The upc_private_memvec_t type

Synopsis

1 #include <upc_io.h>

 upc_private_memvec_t myPrivateMemoryVector;

Description

1 upc_private_memvec_t is defined as follows:

 typedef struct {
 void *baseaddr;
 size_t len;
 } upc_private_memvec_t;

baseaddr and len specify a contiguous memory region in terms of the base
address and length in bytes. len may be zero, in which case that entry is
ignored.

7.3.1.4 The upc_shared_memvec_t type

Synopsis

1 #include <upc_io.h>

 upc_shared_memvec_t mySharedMemoryVector;

 16

Description

1 upc_shared_memvec_t is defined as follows:

typedef struct {
 shared void *baseaddr;
 size_t blocksize;
 size_t len;
} upc_shared_memvec_t;

baseaddr and len specify a shared memory region in terms of the base
address and length in bytes. len may be zero, in which case that entry is
ignored. blocksize is the block size of the shared buffer in bytes. A
blocksize of 0 indicates an indefinite blocking factor.

7.3.1.5 The upc_filevec_t type

Synopsis

1 #include <upc_io.h>

 upc_filevec_t myFileVector;

Description

1 upc_filevec_t is defined as follows:

typedef struct {
 upc_off_t offset;
 size_t len;
} upc_filevec_t;

offset and len specify a contiguous region in the file in terms of the
starting offset in the file in bytes and the length.

7.3.1.6 The upc_hint_t type

Synopsis

1 #include <upc_io.h>

 upc_hint_t myHint;

 17

Description

1 upc_hint_t is defined as follows:

typedef struct {
 const char *key;
 const char *value;
} upc_hint_t;

2 UPC-IO supports a number of predefined hints. An implementation is free to
support additional hints. An implementation is free to ignore any hint provided by
the user. Implementations should silently ignore any hints they do not support or
recognize. The predefined hints and their meanings are defined below. An
implementation is not required to interpret these key values, but if it does interpret
the key value, it must provide the functionality described. For each hint name
introduced, we describe the type of the hint value and its meaning. All hints are
single-valued.

access_style (comma-separated list of strings): indicates the manner in

which the file is expected to be accessed. The hint value is a comma-separated
list of any the following: read_once, write_once, read_mostly,
write_mostly, sequential, and random. Passing such a hint does not
place any constraints on how the file may actually be accessed by the
program, although accessing the file in a way that is different from the
specified hint may result in lower performance.

 collective_buffering (boolean): specifies whether the application may
benefit from collective buffering optimizations. Legal values for this key are
“true” and “false”. Collective buffering parameters can be further
directed via additional hints: cb_buffer_size, and cb_nodes.

cb_buffer_size (integer): specifies the total buffer space that the
implementation can use on each thread for collective buffering.

cb_nodes (integer): specifies the number of target threads or I/O nodes to be
used for collective buffering.

file_perm (string): specifies the file permissions to use for file creation. The
set of legal values for this key is implementation dependent.

io_node_list (comma separated list of strings): specifies the list of I/O
devices that should be used to store the file and is only relevant when the file
is created.

nb_proc (integer): specifies the number of threads that will typically be used to
run programs that access this file and is only relevant when the file is created.

striping_factor (integer): specifies the number of I/O devices that the file
should be striped across and is relevant only when the file is created.

start_io_device (integer): specifies the number of the first I/O device from
which to start striping the file and is relevant only when the file is created.

 18

striping_unit (integer): specifies the striping unit to be used for the file. The
striping unit is the amount of consecutive data assigned to one I/O device
before progressing to the next device, when striping across a number of
devices. It is expressed in bytes. This hint is relevant only when the file is
created.

7.3.2 UPC File Operations

Common Constraints

1 All UPC-IO functions are collective and must be called by all threads. (See [10]
for a definitive definition of collective).

2 The arguments to all UPC-IO functions are single-valued (must have the same

value on threads) except where explicitly noted otherwise in the function
description.

3 If the type of file pointer is not provided at file open, an error will be returned.

4 When a file is opened with a private file pointer, each thread will get its own file

pointer and advances through the file at its own pace.

5 When a shared file pointer is used, all threads positioned in the file will be aligned

with that shared file pointer.

6 Shared file pointers cannot be used in conjunction with private buffers.

7 No function in this section (7.3.2) may be called while an asynchronous operation is

pending on the file handle.

7.3.2.1 The upc_all_open function

Synopsis

#include <upc.h>
#include <upc_io.h>

upc_file_t *upc_all_open(const char *fname,
 int flags,
 size_t numhints,
 upc_hint_t const *hints)

 Description

 19

1 upc_all_open opens the file identified by the filename fname for
input/output operations.

2 The flags parameter specifies the access mode. The valid flags and their

meanings are listed below. Of these flags, exactly one of UPC_RDONLY,
UPC_WRONLY, or UPC_RDWR, and one of UPC_SHARED_FP or
UPC_PRIVATE_FP, must be used. Other flags are optional. Multiple flags can be
passed by using the bitwise OR operator (|).

UPC_RDONLY Open the file in read-only mode
UPC_WRONLY Open the file in write-only mode
UPC_RDWR Open the file in read/write mode

UPC_PRIVATE_FP Use a private file pointer for all file accesses (other than list
I/O)

UPC_SHARED_FP Use the shared file pointer for all file accesses (other than
list I/O)

UPC_APPEND Set the initial position of the file pointer to end of file. (The
file pointer is not moved to the end of file after each
read/write.)

UPC_CREATE Create the file if it does not already exist
UPC_EXCL

Used in conjunction with UPC_CREATE. The open will fail
if the file already exists.

UPC_STRICT Set strict consistency and atomicity semantics
UPC_TRUNC Open the file and truncate it to zero length

UPC_DELETE_ON_CLOSE Delete the file on close

3 The UPC_SHARED_FP flag specifies that all accesses (except for the list I/O

operations) will use the shared file pointer. The UPC_PRIVATE_FP flag
specifies that all accesses will use private file pointers (except for the list I/O
operations). Either UPC_SHARED_FP or UPC_PRIVATE_FP must be specified
or upc_all_open will return an error.

4 The UPC_STRICT flag specifies strict consistency and atomicity semantics. The

data written by a thread is visible to other threads as soon as the write on the
calling thread returns. In the case of writes from multiple threads to overlapping
regions in the file, the result would be as if the individual write function from
each thread occurred atomically in some (unspecified) order. In the case of
overlapping reads into a shared buffer in memory when using private file pointers
or list I/O functions, the result would be as if the individual read functions from
each thread occurred atomically in some (unspecified) order.

5 If the flag UPC_STRICT is not specified, weak semantics are provided. The data

written by a thread is only guaranteed to be visible to another thread after all

 20

threads have called upc_all_close or upc_all_file_sync. (Note that
the data may be visible to other threads before the call to upc_all_close or
upc_all_file_sync and that the data may become visible to different threads at
different times.) Writes from a given thread are always guaranteed to be visible
to subsequent reads by the same thread, even without an intervening call to
upc_all_close or upc_all_file_sync. Byte-level data consistency is
supported. For the purposes of atomicity and consistency semantics, each call to
upc_all_[async_]{read,write}_shared with a shared file pointer
behaves as if the read/write operations were performed by a single, distinct,
anonymous thread which is different from any compute thread (and different for
each operation).”*

6 Hints can be passed to the UPC-IO library as an array of key-value pairs† of
strings. numhints specifies the number of hints in the hints array; if
numhints is zero, the hints pointer is ignored. The user can free the hints
array as soon as the open call returns. Each element of the hints array is of type
upc_hint_t.

7 A file on the storage device is in the open state from the beginning of an open call
to the end of the matching close call. It is erroneous to have the same file open
simultaneously with two upc_all_open calls, or with a upc_all_open call
and a POSIX/C open or fopen call.

8 The user is responsible for ensuring that the file referenced by the fname
argument refers to a single file. The actual argument passed on each thread may
be different because the file name spaces may be different on different threads,
but they must all refer to the same logical UPC-IO file.

9 On success, the function returns a pointer to a file handle that can be used to
perform other operations on the file. If an error occurs, the function returns NULL
and sets errno appropriately.

7.3.2.2 The upc_all_close function

Synopsis

#include <upc.h>
#include <upc_io.h>

* In other words, NO reads are guaranteed to see the results of writes using the shared file pointer until after
a close or sync when UPC_STRICT is not specified.
† The contents of the key/value pairs passed by all the threads must be single valued.

 21

int upc_all_close(upc_file_t *fd)

 Description

1 upc_all_close executes an implicit upc_all_file_sync and then closes the
file associated with fd.

2 The function returns 0 on success. If fd is not valid or if an outstanding

asynchronous operation has not been completed, the function returns –1 and sets
errno appropriately.

3 After a file has been closed with upc_all_close, the file can legally be

opened and the data in it can be accessed by using regular C/POSIX I/O calls.

7.3.2.3 The upc_all_file_sync function

Synopsis

#include <upc.h>
#include <upc_io.h>

int upc_all_file_sync(upc_file_t *fd)

 Description

1 upc_all_file_sync ensures that any data that has been written to the file
associated with fd but not yet transferred to the storage device is transferred to
the storage device. It also ensures that subsequent file reads from any thread will
see any previously written values (that have not yet been overwritten).

2 The function returns 0 on success. On error, it returns –1 and sets errno

appropriately.

7.3.2.4 The upc_all_seek function

Synopsis

#include <upc.h>
#include <upc_io.h>

upc_off_t upc_all_seek(upc_file_t *fd,
 upc_off_t offset,

 22

 int origin)

 Description

1 upc_all_seek sets the current position of the file pointer associated with fd.

2 This offset can be relative to the current position of the file pointer, to the

beginning of the file, or to the end of the file. The offset can be negative, which
allows seeking backwards.

3 The origin parameter can be specified as UPC_SEEK_SET, UPC_SEEK_CUR, or

UPC_SEEK_END, respectively, to indicate that the offset must be computed from
the beginning of the file, the current location of the file pointer, or the end of the
file.

4 In the case of a shared file pointer, all threads must specify the same offset and

origin. In the case of a private file pointer, each thread may specify a different
offset and origin.

5 It is legal to seek past the end of file. It is erroneous to seek to a negative position

in the file. See the Common Constraints number 5 at the beginning of Section 7.3
for more details.

6 The current position of the file pointer can be determined by calling

upc_all_seek(fd, 0, UPC_SEEK_CUR).

7 On success, the function returns the current location of the file pointer in bytes. If

there is an error, it returns –1 and sets errno appropriately.

7.3.2.5 The upc_all_file_set_size function
Synopsis

#include <upc.h>
#include <upc_io.h>

int upc_all_file_set_size(upc_file_t *fd,
 upc_off_t size)

 Description

1 upc_all_file_set_size executes an implicit upc_all_file_sync
and resizes the file associated with fd.

 23

2 size is measured in bytes from the beginning of the file.

3 If size is less than the current file size, the file is truncated at the position

defined by size. The implementation is free to deallocate file blocks located
beyond this position.

4 If size is greater than the current file size, the file size increases to size.

Regions of the file that have been previously written are unaffected. The values of
data in the new regions in the file (between the old size and size) are undefined.

5 If this function truncates a file, it is possible that the private and shared file

pointers may point beyond the end of file. This is legal and is equivalent to
seeking past the end of file (see the Common Rules in Section 5 for the semantics
of seeking past the end of file).

6 It is implementation dependent whether this function allocates file space. Use

upc_all_file_preallocate to force file space to be reserved.

7 Calling this function does not affect the private or shared file pointers.

8 The function returns 0 on success. On error, it returns –1 and sets errno
appropriately.

7.3.2.6 The upc_all_file_get_size function

Synopsis

#include <upc.h>
#include <upc_io.h>

upc_off_t upc_all_file_get_size(upc_file_t *fd)

 Description

1 upc_all_file_get_size returns the current size in bytes of the file
associated with fd on success. On error, it returns –1 and sets errno
appropriately.

7.3.2.7 The upc_all_file_preallocate function

 24

Synopsis

#include <upc.h>
#include <upc_io.h>

int upc_all_file_preallocate(upc_file_t *fd,
 upc_off_t size)

 Description

1 upc_all_preallocate ensures that storage space is allocated for the first
size bytes of the file associated with fd.

2 Regions of the file that have previously been written are unaffected. For newly

allocated regions of the file, upc_all_file_preallocate has the same
effect as writing undefined data.

3 If size is greater than the current file size, the file size increases to size. If

size is less than or equal to the current file size, the file size is unchanged.

4 Calling this function does not affect the private or shared file pointers.

5 The function returns 0 on success. On error, it returns –1 and sets errno

appropriately.

7.3.2.8 The upc_all_fcntl function

Synopsis

#include <upc.h>
#include <upc_io.h>

int upc_all_fcntl(upc_file_t *fd,
 int cmd,
 void *arg)

 Description

1 upc_all_fcntl performs one of various miscellaneous operations related to
the file specified by fd, as determined by cmd. The valid commands cmd and
their associated argument arg are explained below.

UPC_GET_

CA_SEMANTICS Get the current consistency and atomicity semantics

 25

used. The argument arg is ignored.
The return value is UPC_STRICT for strict consistency
and atomicity semantics and 0 for the default weak
consistency and atomicity.

UPC_SET_WEAK_
CA_SEMANTICS

Executes an implicit upc_all_file_sync on fd
and sets the weak consistency and atomicity semantics to
be used from now on.
The argument arg is ignored.
The return value is 0 on success. On error, this function
returns -1 and sets errno appropriately.

UPC_SET_STRONG_
CA_SEMANTICS

Executes an implicit upc_all_file_sync on fd and
sets the strong consistency and atomicity semantics to be
used from now on.
The argument arg is ignored.
The return value is 0 on success. On error, this function
returns -1 and sets errno appropriately.

UPC_SET_SHARED_FP Executes an implicit upc_all_file_sync on fd,
switches the current file access pointer mechanism to a
shared file pointer, and seeks to the beginning of the file.
The argument arg is ignored.
The return value is 0 on success. On error, this function
returns -1 and sets errno appropriately.

UPC_SET_PRIVATE_FP Executes an implicit upc_all_file_sync on fd,
switches the current file access pointer mechanism to a
private file pointer, and seeks to the beginning of the file.
The argument arg is ignored.
The return value is 0 on success. On error, this function
returns -1 and sets errno appropriately.

UPC_GETFP Get the type of the current file pointer.
The argument arg is ignored.
The return value is either UPC_SHARED_FP in case of a
shared file pointer, or UPC_PRIVATE_FP for private
file pointers.

UPC_GETFL Get the flags specified during the upc_all_open call.
The argument arg is ignored.
The return value has similar format to the flags
parameter in upc_all_open.

UPC_GETFN Get the file name provided by each thread in the
upc_all_open call that created fd.
The argument arg is a valid (char**) pointing to
(char*) location in which a pointer to file name will be
written.
Writes a (char*) into *arg pointing to the filename in

 26

implementation-maintained read-only memory, which
will remain valid until the file handle is closed or until
the next upc_all_fcntl call on that file handle.

UPC_GET_HINTS

Retrieve the hints applicable to fd.
The argument arg is a valid (upc_hint**) pointing to
a (upc_hint*) location in which a pointer to the hints
array will be written.
Writes a (upc_hint_t*) into *arg pointing to an
array of upc_hint_t’s in implementation-maintained
read-only memory, which will remain valid until the file
handle is closed or until the next upc_all_fnctl call
on that file handle. The number of hints in the array is
returned by the call.
The hints in the array may be a subset of those specified
at file open time, if the implementation ignored some
unrecognized or unsupported hints.

UPC_SET_HINT

Executes an implicit upc_all_file_sync on fd and
sets a new hint to fd.
The argument arg points to one single-valued
upc_hint_t hint to be applied.
The return value is 0 on success. On error, this function
returns -1 and sets errno appropriately.

UPC_ASYNC_OUTSTANDING

Returns 1 if there is an asynchronous operation
outstanding for this file handle, or 0 otherwise.

2 In case of a non valid fd, upc_all_fcntl returns -1 and sets errno

appropriately.

3 It is legal to call upc_all_fcntl(UPC_ASYNC_OUTSTANDING) when an

asynchronous operation is outstanding (but it is still illegal to call
upc_all_fcntl with any other argument when an asynchronous operation is
outstanding).

7.3.3 Reading Data

Common Constraints

1 No function in this section (7.3.3) may be called while an asynchronous operation is

pending on the file handle.

2 No function in this section (7.3.3) implies the presence of barriers at entry or exit.
However, the programmer is advised to use a barrier after calling
upc_all_read_shared to ensure that the entire shared buffer has been filled up.

 27

7.3.3.1 The upc_all_read_private function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_read_private(upc_file_t *fd,
 void *buffer,
 size_t size)

 Description

1 upc_all_read_private reads data from a file into a private buffer on each
thread.

2 This function can be called only if the file was opened for reading with private

file pointers. It is erroneous to call this function if the file was opened with the
UPC_SHARED_FP flag.

3 buffer is a pointer to an array into which data will be read, and each thread may

pass a different value for buffer.

4 size is the number of bytes that each thread must read from the file, and each

thread may pass a different value for size. size may be zero, in which case the
buffer argument is ignored and that thread performs no I/O.

5 On success, the function returns the number of bytes read into the private buffer

of the calling thread, and the private file pointer of the thread is incremented by
that amount. On error, it returns –1 and sets errno appropriately.

7.3.3.2 The upc_all_read_shared function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_read_shared(upc_file_t *fd,
 shared void *buffer,
 size_t blocksize,

 28

 size_t size)

 Description

1 upc_all_read_shared reads data from a file into a shared buffer in
memory.

2 The function can be called either when the file was opened for reading with a

shared file pointer or when the file was opened for reading with private file
pointers.

3 buffer is a pointer to an array into which data will be read. It must be a pointer

to shared data and may have affinity to any thread. blocksize is the block size
of the shared buffer in bytes. A blocksize of 0 indicates an indefinite blocking
factor.

4 In the case of private file pointers, the following rules apply: Each thread may

pass a different address for the buffer parameter. size represents the number
of bytes that each thread must read from the file. Each thread may specify a
different value for size and may read from a different location in the file as
specified by its private file pointer. size may be zero, in which case the
buffer argument is ignored and that thread performs no I/O. On success, the
function returns the number of bytes read by the calling thread, and the private
file pointer of the thread is incremented by that amount.

5 In the case of a shared file pointer, the following rules apply: All threads must

pass the same address for the buffer parameter. size represents the total
number of bytes that all threads read into the shared buffer. All threads must pass
the same value for size. size may be zero, in which case the buffer
argument is ignored and the operation has no effect. On success, the function
returns the total number of bytes read by all threads, and the shared file pointer is
incremented by that amount.

6 If reading with private file pointers results in overlapping reads in the shared

buffer, the result is determined by whether the file was opened with the
UPC_STRICT flag or not (see Section 7.3.2.1).

7 The function returns –1 on error and sets errno appropriately.

7.3.4 Writing Data

Common Constraints

 29

1 No function in this section (7.3.4) may be called while an asynchronous operation is
pending on the file handle.

2 No function in this section (7.3.4) implies the presence of barriers at entry or exit.

However, the programmer is advised to use a barrier before calling
upc_all_write_shared to ensure that the entire shared buffer is up-to-date
before being written to the file.

.

7.3.4.1 The upc_all_write_private function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_write_private(upc_file_t *fd,
 void *buffer, size_t size)

 Description

1 upc_all_write_private writes data from a private buffer on each thread
into a file.

2 This function can be called only if the file was opened for writing with private file

pointers. It is erroneous to call this function if the file was opened with the
UPC_SHARED_FP flag.

3 buffer is a pointer to an array from which data will be written, and each thread

may pass a different value for buffer.

4 size is the number of bytes that each thread must write to the file, and each

thread may pass a different value for size. size may be zero, in which case the
buffer argument is ignored and that thread performs no I/O.

5 If any of the writes result in overlapping accesses in the file, the result is

determined by whether the file was opened with the UPC_STRICT flag or not
(see Section 7.3.2.1).

6 On success, the function returns the number of bytes written by the calling thread,

and the private file pointer of the thread is incremented by that amount. On error,
it returns –1 and sets errno appropriately.

 30

7.3.4.2 The upc_all_write_shared function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_write_shared(upc_file_t *fd,
 shared void *buffer,
 size_t blocksize,
 size_t size)

 Description

1 upc_all_write_shared writes data from a shared buffer in memory to a
file.

2 The function can be called either when the file was opened for writing with a

shared file pointer or when the file was opened for writing with private file
pointers.

3 buffer is a pointer to an array from which data will be written. It must be a

pointer to shared data and may have affinity to any thread. blocksize is the
block size of the shared buffer in bytes. A blocksize of 0 indicates an
indefinite blocking factor.

4 In the case of private file pointers, the following rules apply: Each thread may

pass a different address for the buffer parameter. size represents the number
of bytes that each thread must write to the file. Each thread may specify a
different value for size and may write to a different location in the file as
specified by its private file pointer. size may be zero, in which case the
buffer argument is ignored and that thread performs no I/O. On success, the
function returns the number of bytes written by the calling thread, and the private
file pointer of the thread is incremented by that amount.

5 In the case of a shared file pointer, the following rules apply: All threads must

pass the same address for the buffer parameter. size represents the total
number of bytes that all threads write from the shared buffer. All threads must
pass the same value for size. size may be zero, in which case the buffer
argument is ignored and the operation has no effect. On success, the function
returns the total number of bytes written by all threads, and the shared file pointer
is incremented by that amount.

 31

6 If writing with private file pointers results in overlapping accesses in the file, the
result is determined by whether the file was opened with the UPC_STRICT flag
or not (see Section 7.3.2.1).

7 The function returns –1 on error and sets errno appropriately.

7.3.5 List I/O

Common Constraints

1 UPC-IO functions are collective and must be called by all threads. (See Section 3.6 of
the UPC Specification [1] for the definition of collective).

2 List I/O functions take a list of addresses/offsets and corresponding lengths in memory

and file to read from or write to.

3 List I/O functions can be called regardless of whether the file was opened for

private file pointers or the shared file pointer.

4 File pointers are not updated as a result of a list I/O read/write operation.

5 The memvec argument passed to any list I/O read function by a single thread

must not specify overlapping regions in memory.

6 The base addresses passed to memvec can be in any order.

7 The filevec argument passed to any list I/O write function by a single thread
must not specify overlapping regions in the file.

8 The offsets passed in filevec must be in monotonically non-decreasing order.

9 No function in this section (7.3.5) may be called while an asynchronous operation is

pending on the file handle.

10 No function in this section (7.3.5) implies the presence of barriers at entry or exit.
However, the programmer is advised to use a barrier after calling
upc_all_read_list_shared to ensure that the entire shared buffer has been
filled up, and similarly, use a barrier before calling
upc_all_write_list_shared to ensure that the entire shared buffer is up-to-
date before being written to the file.

Note that for all the list I/O functions, each thread passes an independent set of memory
and file vectors. Passing the same vectors on two or more threads specifies redundant
work.

 32

7.3.5.1 The upc_all_read_list_private function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_read_list_private(upc_file_t *fd,
 size_t memvec_entries,
 upc_private_memvec_t const *memvec,
 size_t filevec_entries,
 upc_filevec_t const *filevec)

 Description

1 upc_all_read_list_private reads data from a file that was opened for
reading into private buffers in memory.

2 memvec_entries indicates the number of entries in the array memvec and

filevec_entries indicates the number of entries in the array filevec. The
values may be 0, in which case the memvec or filevec argument is ignored
and no locations are specified for I/O.

3 The result is as if data were read in order from the list of locations specified by

filevec and placed in memory in the order specified by the list of locations in
memvec. The total amount of data specified by memvec must equal the amount
of data specified by filevec.

4 On success, the function returns the number of bytes read by the calling thread.

On error, it returns –1 and sets errno appropriately.

7.3.5.2 The upc_all_read_list_shared function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_read_list_shared(upc_file_t *fd,
 size_t memvec_entries,
 upc_shared_memvec_t const *memvec,
 size_t filevec_entries,
 upc_filevec_t const *filevec)

 33

 Description

1 upc_all_read_list_shared reads data from a file that was opened for
reading into various locations of a shared buffer in memory.

2 memvec_entries indicates the number of entries in the array memvec and

filevec_entries indicates the number of entries in the array filevec. The
values may be 0, in which case the memvec or filevec argument is ignored
and no locations are specified for I/O.

3 The result is as if data were read in order from the list of locations specified by

filevec and placed in memory in the order specified by the list of locations in
memvec. The total amount of data specified by memvec must equal the amount
of data specified by filevec.

4 If any of the reads from different threads result in overlapping regions in memory,

the result is determined by whether the file was opened with the UPC_STRICT
flag or not (see Section 7.3.2.1).

5 On success, the function returns the number of bytes read by the calling thread.

On error, it returns –1 and sets errno appropriately.

6 Note: With the above definition, there is no way to do with explicit offsets the

equivalent of upc_all_read_shared using a shared file pointer, namely,
where all threads specify the same access (same parameters), the data gets read
collectively into the shared buffer, and the function returns the total amount of
data read by all threads.

7.3.5.3 The upc_all_write_list_private function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_write_list_private(upc_file_t *fd,
 size_t memvec_entries,
 upc_private_memvec_t const *memvec,
 size_t filevec_entries,
 upc_filevec_t const *filevec)

 Description

1 upc_all_write_list_private writes data from private buffers in
memory to a file that was opened for writing.

 34

2 memvec_entries indicates the number of entries in the array memvec
and filevec_entries indicates the number of entries in the array
filevec. The values may be 0, in which case the memvec or filevec
argument is ignored and no locations are specified for I/O.

3 The result is as if data were written from memory locations in the order

specified by the list of locations in memvec to locations in the file in the order
specified by the list in filevec. The total amount of data specified by
memvec must equal the amount of data specified by filevec.

4 If any of the writes from different threads result in overlapping accesses in the

file, the result is determined by whether the file was opened with the
UPC_STRICT flag or not (see Section 7.3.2.1).

5 On success, the function returns the number of bytes written by the calling

thread. On error, it returns –1 and sets errno appropriately.

7.3.5.4 The upc_all_write_list_shared function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_write_list_shared(upc_file_t *fd,
 size_t memvec_entries,
 upc_shared_memvec_t const *memvec,
 size_t filevec_entries,
 upc_filevec_t const *filevec)

 Description

1 upc_all_write_list_shared writes data from various locations of a
shared buffer in memory to a file that was opened for writing.

2 memvec_entries indicates the number of entries in the array memvec and

filevec_entries indicates the number of entries in the array filevec. The
values may be 0, in which case the memvec or filevec argument is ignored
and no locations are specified for I/O.

3 The result is as if data were written from memory locations in the order specified

by the list of locations in memvec to locations in the file in the order specified by

 35

the list in filevec. The total amount of data specified by memvec must equal
the amount of data specified by filevec.

4 If any of the writes from different threads result in overlapping accesses in the

file, the result is determined by the atomicity settings, namely, whether the file
was opened with the UPC_STRICT flag or not (see Section 7.3.2.1).

5 On success, the function returns the number of bytes written by the calling thread.

On error, it returns –1 and sets errno appropriately.

6 Note: With the above definition, there is no way to do with explicit offsets the

equivalent of upc_all_write_shared using a shared file pointer, namely,
where all threads specify the same access (same parameters), the data gets
written collectively from a shared buffer, and the function returns the total
amount of data written by all threads.

7.3.6 Asynchronous I/O

Common Constraints

1 Only one asynchronous I/O operation can be outstanding on a UPC-IO file handle at
any time.

2 For asynchronous read operations, the contents of the destination memory are

undefined until after a successful upc_all_async_wait or
upc_all_async_test on the file handle. For asynchronous write operations, the
source memory may not be safely modified until after a successful
upc_all_async_wait or upc_all_async_test on the file handle.

3 If an error occurs during the completion of one asynchronous I/O operation, the

position of the file pointer becomes undefined.

4 An implementation is free to block for completion of an operation in the asynchronous
initiation call or in the upc_all_async_test call (or both). High-Quality
implementations are recommended to minimize the amount of time spent within the
asynchronous initiation or upc_all_async_test call.

5 In the case of list I/O functions, the user may modify or free the lists after the

asynchronous I/O operation has been initiated.

7.3.6.1 The upc_all_async_read_private function

 36

Synopsis

#include <upc.h>
#include <upc_io.h>

void upc_all_async_read_private(upc_file_t *fd,
 void *buffer,
 size_t size)

 Description

1 upc_all_async_read_private initiates an asynchronous read from a file
into a private buffer on each thread.

2 The meaning of the parameters and restrictions are the same as for the blocking

function, upc_all_read_private.

3 The status of this asynchronous I/O operation can be retrieved by calling

upc_all_async_test or upc_all_async_wait.

7.3.6.2 The upc_all_async_read_shared function

Synopsis

#include <upc.h>
#include <upc_io.h>

void upc_all_async_read_shared(upc_file_t *fd,
 shared void *buffer,
 size_t blocksize,
 size_t size)

 Description

1 upc_all_async_read_shared initiates an asynchronous read from a file
into a shared buffer on each thread.

2 The meaning of the parameters and restrictions are the same as for the blocking

function, upc_all_read_shared.

3 The status of this asynchronous I/O operation can be retrieved by calling
upc_all_async_test or upc_all_async_wait..

 37

7.3.6.3 The upc_all_async_write_private function

Synopsis

#include <upc.h>
#include <upc_io.h>

void upc_all_async_write_private(upc_file_t *fd,
 void *buffer,
 size_t size)

 Description

1 upc_all_async_write_private initiates an asynchronous write from a
private buffer on each thread to a file.

2 The meaning of the parameters and restrictions are the same as for the blocking

function, upc_all_write_private.

3 The status of this asynchronous I/O operation can be retrieved by calling

upc_all_async_test or upc_all_async_wait.

7.3.6.4 The upc_all_async_write_shared function

Synopsis

#include <upc.h>
#include <upc_io.h>

void upc_all_async_write_shared(upc_file_t *fd,
 shared void *buffer,
 size_t blocksize,
 size_t size)

 Description

 1 upc_all_async_write_shared initiates an asynchronous write from a
shared buffer to a file.

2 The meaning of the parameters and restrictions are the same as for the blocking

function, upc_all_write_shared.

3 The status of this asynchronous I/O operation can be retrieved by calling
upc_all_async_test or upc_all_async_wait.

 38

7.3.6.5 The upc_all_async_read_list_private function

Synopsis

#include <upc.h>
#include <upc_io.h>

 void upc_all_async_read_list_private(upc_file_t *fd,
 size_t memvec_entries,
 upc_private_memvec_t const *memvec,
 size_t filevec_entries,
 upc_filevec_t const *filevec)

 Description

1 upc_all_async_read_list_private initiates an asynchronous read of
data from a file into private buffers in memory.

2 The meaning of the parameters and restrictions are the same as for the blocking

function, upc_all_read_list_private.

3 The status of this asynchronous I/O operation can be retrieved by calling
upc_all_async_test or upc_all_async_wait.

7.3.6.6 The upc_all_async_read_list_shared function

Synopsis

#include <upc.h>
#include <upc_io.h>

void upc_all_async_read_list_shared(upc_file_t *fd,
 size_t memvec_entries,
 upc_shared_memvec_t const *memvec,
 size_t filevec_entries,
 upc_filevec_t const *filevec)

 Description

1 upc_all_read_list_shared initiates an asynchronous read of data from a
file into various locations of a shared buffer in memory.

 39

2 The meaning of the parameters and restrictions are the same as for the blocking
function, upc_all_read_list_shared.

3 The status of this asynchronous I/O operation can be retrieved by calling

upc_all_async_test or upc_all_async_wait.

7.3.6.7 The upc_all_async_write_list_private function

Synopsis
#include <upc.h>

 #include <upc_io.h>

void upc_all_async_write_list_private(upc_file_t *fd,
 size_t memvec_entries,
 upc_private_memvec_t const *memvec,
 size_t filevec_entries,
 upc_filevec_t const *filevec)

 Description

1 upc_all_async_write_list_private initiates an asynchronous write
of data from private buffers in memory to a file.

2 The meaning of the parameters and restrictions are the same as for the blocking

function, upc_all_write_list_private.

3 The status of this asynchronous I/O operation can be retrieved by calling
upc_all_async_test or upc_all_async_wait.

7.3.6.8 The upc_all_async_write_list_shared function

Synopsis

#include <upc.h>

 #include <upc_io.h>

void upc_all_async_write_list_shared(upc_file_t *fd,
 size_t memvec_entries,
 upc_shared_memvec_t const *memvec,
 size_t filevec_entries,
 upc_filevec_t const *filevec)

 Description

 40

1 upc_all_async_write_list_shared initiates an asynchronous write of
data from various locations of a shared buffer in memory to a file.

2 The meaning of the parameters and restrictions are the same as for the blocking

function, upc_all_write_list_shared.

3 The status of this asynchronous I/O operation can be retrieved by calling
upc_all_async_test or upc_all_async_wait.

7.3.6.9 The upc_all_async_wait function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_async_wait(upc_file_t *fd)

 Description

1 upc_all_async_wait completes the previously issued asynchronous I/O
operation on the file handle fd.

2 It is erroneous to call this function if there is no outstanding asynchronous I/O

operation associated with fd.

3 On success, the function returns the number of bytes read or written by the
asynchronous I/O operation as specified by the blocking variant of the function
used to initiate the asynchronous operation. On error, it returns –1 and sets
errno appropriately, and the outstanding asynchronous operation (if any)
becomes no longer outstanding.

7.3.6.10 The upc_all_async_test function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_async_test(upc_file_t *fd,
 int *flag)

 41

 Description

1 upc_all_async_test tests whether the outstanding asynchronous I/O
operation associated with fd has completed.

2 If the operation has completed, the function sets flag=1 and the asynchronous

operation becomes no longer outstanding‡; otherwise it sets flag=0. The same
value of flag is returned on all threads.

3 If the operation was completed, the function returns the number of bytes that were

read or written as specified by the blocking variant of the function used to initiate
the asynchronous operation. On error, it returns –1 and sets errno appropriately,
and sets the flag=1, and the outstanding asynchronous operation (if any)
becomes no longer outstanding.

4 It is erroneous to call this function if there is no outstanding asynchronous I/O

operation associated with fd.

‡ This implies it is illegal to call upc_all_async_wait or upc_all_async_test immediately
after a successful upc_all_async_test on that file handle.

 42

References

[1] Tarek A. El-Ghazawi, William W. Carlson, and Jesse M. Draper. UPC Language
Specifications V1.1 (http://upc.gwu.edu). March 2003.

[2] William W. Carlson, Jesse M. Draper, David Culler, Kathy Yelick, Eugene Brooks,
and Karen Warren. Introduction to UPC and Language Specification CCS-TR-99-157.

[3] American National Standards Institute, American National Standard for Information
Systems, Programming Language--C, 1989.

[4] Tarek A. El-Ghazawi, F. Cantonnet, UPC Performance and Potential: A NPB
Experimental Study Supercomputing2002 (SC2002), IEEE, Baltimore, November 2002

[5] Tarek A. El-Ghazawi, Programming in UPC
(ftp://ftp.seas.gwu.edu/pub/upc/downloads/tut/sld001.htm), March 2001.

[6] MPI-2: Extensions to the Message-Passing Interface, Message Passing Interface
Forum, July 18, 1997.

[7] John M. May, Parallel I/O for High Performance Computing, Morgan Kaufmann,
October 2000.

[8] Intel Corporation, Paragon System User’s Guide, May 1995, 312489-004

[9] ISO Programming Languages-C. ISO/SEC 9899. May 2000.

[10] Elizabeth Wiebel, David Greenberg and Steven Seidel, UPC Collective Operations
Specification V1.0 pre4 (ftp://ftp.seas.gwu.edu/pub/upc/downloads/Coll-pre4-V1-0.ps),
April 2003.

 43

APPENDIX A : Open Issues

This section describes features that will be discussed in future releases of the UPC-IO
Specifications.

1. Returning error values and errno are a good idea, especially since there's a number
of I/O errors (e.g. "file not found") which some applications may want to treat as
non-fatal. However, doing so requires that we specify what the possible error
values are and ideally which functions may return which errors. Can we just use
the standard POSIX provided errno values, or do we need additional ones to
handle UPC-IO specific errors? (if so, then it's probably not appropriate to be
using POSIX errno, which has connections to system-defined functions like
perror() and strerror()).

2. We may need to rename some identifiers to accommodate recent terminology

changes in the UPC language specification. For example, we may need to rename
upc_private_memvec_t to upc_local_memvec_t and the *_private
functions to *_local (although we can keep the “private” terminology for file
pointers, which may actually improve clarity by not overloading terms).

3. Everything needs to be converted to LaTeX for merging with language spec. We

need to certain not to lose any wording, etc during this conversion.

4. We may want to provide single-valued errors for upc_all_open and
upc_all_close – otherwise the state of the file handle is indeterminate after
an error (i.e. all threads should always agree upon whether the file is officially
open or not). The performance penalty for this should be minimal, since file
open/close should be relatively infrequent and barrier synchronization is probably
required here anyhow.

5. We may want to add support for allowing multiple outstanding asynchronous

operations on the same file handle. This can be done by introducing a handle
datatype like upc_all_handle_t to represent the explicitly non-blocking
collective operation in flight, and have this value returned by each async init
function and consumed by
upc_all_async_test()/upc_all_async_wait(). We may even want
to use the same datatype and sync functions or explicitly non-blocking collectives.

6. The proposed collective communication functions now take an extra sync_mode

argument. Assuming that it is approved, we may want to add something similar to
UPC-IO data movement operations to allow explicit control of the barrier
semantics.

